Journal of Organometallic Chemistry, 217 (1981) C9–C13 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

THE USE OF ION-PAIRING PHENOMENA IN THE ASSIGNMENT OF $\nu(CO)$ IR BANDS OF PV(CO)₅

MARCETTA Y. DARENSBOURG* and JOHN M. HANCKEL Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (U.S.A.) (Received May 4th, 1981)

Summary

The interaction of a sodium cation with the *trans*-CO oxygen of $PV(CO)_5^{-1}$ (P = P(OPh)₃, PPh₃, P(n-Bu)₃) had a major effect on the vibrational mode that is primarily comprised of that CO group and removed the accidental degeneracy of A_1^{-1} and $E \nu(CO)$ frequencies.

The assignment of $\nu(CO)$ IR bands of monosubstituted phosphine derivatives of vanadium hexacarbonyl is less than straightforward because of overlapping bands, the presence of an ubiquitous impurity, and the possible appearance of a band formally forbidden by IR selection rules. We have used ion-pairing phenomena to rigorously clarify the assignment.

The C_{4v} symmetry of an isolated $V(CO)_5P^-$ anion (P = phosphine or phosphite ligands) leads to the expectation of 3 infrared active CO stretching vibrations of symmetry A_i^2 , A_i^1 and E. The E mode is expected to be of greater intensity than either A mode. Forbidden by the selection rules is a B_1 stretching vibration. The v(CO) IR spectrum of n-Bu₃PV(CO)₅⁻ as a salt of a hexamethylphosphoric triamide solvate of sodium, Na(HMPA)_x⁺, is shown in Fig. 1. To be sure there are 3 bands here, however the band at 1860 cm⁻¹ is present in a series of PV(CO)₅⁻. anions and is at the position of V(CO)₆⁻, the starting material for the synthesis of these anions [1,2], and/or the possible decomposition product of PV(CO)₅⁻. Consistent with band assignments for LM(CO)₅ derivatives in general [3] the high frequency band at 1964 cm⁻¹ is assigned to the A_1^2 vibrational mode. Hence the A_1^1 mode is either degenerate with the E mode at 1809 cm⁻¹ or it unfortuitously appears at the precise position of a possible impurity.

Based on arguments presented earlier [4], we predicted that an alkali cation/LM(CO)₅ contact ion pair interaction should be at the CO oxygen *trans* to the good donor substituent ligand. The stretching motion of this CO group

0022-328X/81/0000-0000/\$02.50, © 1981, Elsevier Sequoia S.A.

Fig. 1. ν (CO) spectrum of $[Na(HMPA)_{x}^{+}][V(CO)_{s}P(n-Bu)_{3}^{-}]$. A 0.010 *M* solution of $Na^{+}V(CO)_{s}P(n-Bu)_{s}^{+}$ to which 10 equivalents of HMPA to each Na^{+} has been added. The spectrum was measured in 0.10 mm sealed NaCl cells on a Perkin-Elmer 283B spectrophotometer.

Fig. 2. $\nu(CO)$ spectrum of Na⁺V(CO)₅P(n-Bu)₃⁻, 0.01 *M* in THF. The small shoulder at 1957 cm⁻¹ is indicative of the presence of some solvent-separated ion pairs [Na⁺(THF)_y][V(CO)₅P(n-Bu)₃⁻] estimated by band fitting analysis (the composite of which is shown in the solid line overlay [6]) to be at a level of ca. 14%.

is the major component of the A_1^{i} vibrational mode. The conversion of a CO group into a (CO···Na⁺) ligand should significantly modify its π -acceptor ability [4], its bond order, and as a result, its $\nu(CO)$ position. Figure 2 shows the ν (CO) IR spectrum of the sodium salt of V(CO)₅P(n-Bu)₃⁻ in tetrahydrofuran, a solvent of low dielectric constant in which extensive contact ion pairing has been observed [4,5]. The presence of a low frequency band at the expense of the intensity of the band at 1809 cm^{-1} as well as the lack of effect on the 1860 cm^{-1} band suggested the following rationale. The spectrum of the contact ion-paired form of $Na^+V(CO)_5P(n-Bu)_3^-$ is consistent with the preservation of C_{4v} symmetry for the carbonylate. The A_1^1 band is now clearly distinguishable from the E band, which is itself now shifted to 1820 cm⁻¹. The A_1^2 band is similarly slightly shifted to higher wavenumbers. The combined band areas of the $A_1^1 + E$ are roughly equal to the band area of the 1809 cm⁻¹ band of Fig. 1 for solutions of identical concentration. (There is a small intensity loss on going from the symmetrically solvated PV(CO)₅⁻ to the contact ion-paired $PV(CO)_4(CO^{-} \cdots Na^+)$. The structure of the contact ion pair is that shown below, with the sodium ion interacting at the unique CO oxygen:

Incremental addition of the cation solvating agent HMPA gradually diminished the intensity of the low frequency band shown in Fig. 2 and enhanced the intensity of the $1820-1809 \text{ cm}^{-1}$ band. Six to eight equivalents of HMPA were required to completely convert the contact ion pairs to solvent-separated ion pairs [4].

Note that the shift of the band at 1809 to 1820 cm⁻¹ and of the band at 1957 to 1964 cm⁻¹ on changing the conditions from those of Fig. 1 to those of Fig. 2 is also consistent with the existence of the contact ion pair structure I, in pure THF solution. As indicated above, the displacement to lower frequency for the cation-contacted CO group is indicative of the better π -with-drawing ability of the CO···Na⁺ group, which concurrently induces a shift to higher frequencies for those CO groups which do not interact with the counterion and hence compete less effectively for metal *d*-electrons. In contrast the band at 1860 cm⁻¹ is independent of ion pairing status. It has been shown that the ν (CO) IR of pure V(CO)₆⁻ in THF is independent of counterion [6].

Similar results were obtained for analogous $P(OPh)_3$ and PPh_3 derivatives and $\nu(CO)$ IR results for those anions in a symmetrical solvent environment as

ν (CO) IR SPECTRAL DATA FOR SALTS OF P-LIGAND SUBSTITUTED	VANADIUM
CARBONYLATES IN THF SOLUTION ^{<i>a</i>}	
•	

v(CO) Active modes			Forbidden B_1 mode c, d
$\overline{A_1^2}$	E	A_1^1	found (calcd.)
1964	1820	1749	1858
			(1866)
1957	1809	1809 ^e	1850
			(1855)
1970	1832	1764	d
			(1876)
1965	1823	1823 <i>°</i>	d
			(1867)
1987	1850	1801	~1890
			(1893)
1984	1843	1843 ^e	1880
			(1886)
	$\frac{\nu(CO)}{A_1^2}$ 1964 1957 1970 1965 1987 1984	ν (CO) Active mod A_1^2 E 196418201957180919701832196518231987185019841843	ν (CO) Active modes A_1^2 \mathcal{E} A_1^1 1964 1820 1749 1957 1809 1809 1970 1832 1764 1965 1823 1823 1987 1850 1801 1984 1843 1843

^a These spectra were measured on 0.01 *M* solutions in 0.1 mm sealed NaCl infrared cells using a Perkin-Elmer 283B infrared spectrophotometer and calibrated on the water vapor bands at 1942.6 cm⁻¹. ^b A symmetrical solvent environment about the carbonylate was assured in the HMPA solvates by the addition of 10 equivalents of HMPA. This was ca. 43.5 μ l of HMPA in a total THF sample volume of 2.5 ml ^c Calculated as described in the text. ^d Partial overlap of the B_1 with either the *E* mode or the V(CO)₆⁻ at 1860 cm⁻¹ made resolution and detection difficult. ^e See discussion in text;

well as contacted by Na⁺ are shown in Table 1*. Consistent with the electrondonating abilities of the P-donor ligands, $\nu(CO)$ IR shifts of the A_1^1 bands⁻ when contacted by Na⁺ are not as dramatic for the P(OPh)₃ and PPh₃ derivatives as for the P(n-Bu)₃ derivative. A detailed study of spectral and chemical properties of PV(CO)₅⁻ salts which will be published shortly contains a restricted force field CO stretching force constant analysis [6]. In that study the positions of the B_1 vibrational modes were calculated and are presented in Table 1 along with those observed. Note that the B_1 position is not fixed but varies, as do the IR active bands, with the substituent ligand as well as the state of ion-pairing. Frequently however the very weak B_1 band appears as a shoulder on the V(CO)₆⁻ band and is difficult to resolve.

The major curiosity of this study is that the A_1^1 band is invariably degenerate with the *E* band for the three different P-donor ligand substituents. A similar situation exists for isonitrile derivatives [8]. It should be noted that the width of the *E* band could mask positional shifts of the A_1^1 of possibly 10 cm^{-1} within the band envelope without inducing major asymmetry of the band.

Acknowledgement. The support of this work by the National Science Foundation (Grant No. CHE 79-23204) is gratefully acknowledged.

TABLE 1

^{*}The sodium salts of $V(CO)_5P(n-Bu)_3$ and $V(CO)_5PPh_3$ were prepared by literature methods [2] and $V(CO)_5P(OPh)_3$, was prepared by ligand exchange with Na⁺ $V(CO)_5(PPh_3)$. Full details will be reported [6]. The $P(OPh)_3$ derivative was previously reported as a member of a large series of $LV(CO)_5$ anions, however the $\nu(CO)$ infrared assignments and Cotton-Kraihanze! force constants reported are incorrect [7].

References

- 1 A. Davison and J.E. Ellis, J. Organometal. Chem., 31 (1971) 239.
- 2 Walter Hieber, J. Peterhans, and E. Winter, Chem. Ber., 94 (1961) 2572.
- 3 F.A. Cotton and C.S. Kraihanzel, J. Amer. Chem. Soc., 84 (1962) 4432.
 4 M.Y. Darensbourg, D.J. Darensbourg, D. Burns, and D.A. Drew, J. Amer. Chem. Soc., 98 (1976) 3127.
- 5 W.F. Edgell and S. Chanjamsri, J. Amer. Chem. Soc., 102 (1980) 147, and ref. therein.
- 6 M.Y. Darensbourg and J.M. Hanckel, Organometallics, in press.
 7 D. Rehder and J. Schmidt, J. Inorg. Nucl. Chem., 36 (1974) 333.
- 8 J.E. Ellis, K.L. Fjare, and T.G. Hayes, submitted.